Rapid purification and properties of potassium-activated aldehyde dehydrogenase from Saccharomyces cerevisiae.

نویسندگان

  • K A Bostian
  • G F Betts
چکیده

A method for the purification of yeast K+-activated aldehyde dehydrogenase is presented which can be completed in substantially less time than other published procedures. The enzyme has a different N-terminal amino acid from preparations previously reported, and other small differences in amino acid content. These differences may be the result of differential proteolytic digestion rather than a different protein in vivo. A purification step involves the biospecific adsorption on affinity columns containing immobilized nucleotides in the absence of the substrate aldehyde. Direct binding studies with the coenzyme in the absence of aldehyde reveal 4 NAD sites per tetrameric molecule, each with a dissociation constant of 120 micron. These results conflict with properties of preparations previously reported and may conflict with kinetic models that have aldehyde as the leading substrate. Binding to Blue Dextran affinity columns suggests the presence of a dinucleotide fold in common with other dehydrogenases and kinases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetics and reaction mechanism of potassium-activated aldehyde dehydrogenase from Saccharomyces cerevisiae.

Data from steady-state kinetic analysis of yeast K+-activated aldehyde dehydrogenase are consistent with a ternary complex mechanism. Evidence from alternative substrate analysis and product-inhibition studies supports an ordered sequence of substrate binding in which NAD+ is the leading substrate. A preincubation requirement for NAD+ for maximum activity is also consistent with the importance ...

متن کامل

A Simple and Rapid Protocol for Producing Yeast Extract from Saccharomyces cerevisiae Suitable for Preparing Bacterial Culture Media

Yeasts, especially Saccharomyces cerevisiae, are one of the oldest organisms with broad spectrum of applications, owing to their unique genetics and physiology. Yeast extract, i.e. the product of yeast cells, is extensively used as nutritional resource in bacterial culture media. The aim of this study was to develop a simple, rapid and cost benefit process to produce the yeast extract. In this ...

متن کامل

A Simple and Rapid Protocol for Producing Yeast Extract from Saccharomyces cerevisiae Suitable for Preparing Bacterial Culture Media

Yeasts, especially Saccharomyces cerevisiae, are one of the oldest organisms with broad spectrum of applications, owing to their unique genetics and physiology. Yeast extract, i.e. the product of yeast cells, is extensively used as nutritional resource in bacterial culture media. The aim of this study was to develop a simple, rapid and cost benefit process to produce the yeast extract. In this ...

متن کامل

Yeast Aldehyde Dehydrogenase

The potassium-activated, pyridine nucleotide-linked aldehyde dehydrogenase from yeast has been purified to the stage of homogeneity as judged by ultracentrifugation and gel electrophoresis. The enzyme has been crystallized, although this is not a recommended step in purification because loss of catalytic activity is thereby incurred. At least three separable, active fractions were obtained with...

متن کامل

A coniferyl aldehyde dehydrogenase gene from Pseudomonas sp. strain HR199 enhances the conversion of coniferyl aldehyde by Saccharomyces cerevisiae.

The conversion of coniferyl aldehyde to cinnamic acids by Saccharomyces cerevisiae under aerobic growth conditions was previously observed. Bacteria such as Pseudomonas have been shown to harbor specialized enzymes for converting coniferyl aldehyde but no comparable enzymes have been identified in S. cerevisiae. CALDH from Pseudomonas was expressed in S. cerevisiae. An acetaldehyde dehydrogenas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 173 3  شماره 

صفحات  -

تاریخ انتشار 1978